Probabilistic sequence clustering with spectral learning

نویسندگان

  • Yusuf Cem Sübakan
  • Baris Kurt
  • Ali Taylan Cemgil
  • Bülent Sankur
چکیده

Article history: Available online 4 March 2014

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Probabilistic Approach for Optimizing Spectral Clustering

Spectral clustering enjoys its success in both data clustering and semisupervised learning. But, most spectral clustering algorithms cannot handle multi-class clustering problems directly. Additional strategies are needed to extend spectral clustering algorithms to multi-class clustering problems. Furthermore, most spectral clustering algorithms employ hard cluster membership, which is likely t...

متن کامل

Lecture 7 1 Spectral Clustering

Spectral clustering is a technique for segmenting data into non-overlapping subsets. It is used in many machine learning applications (e.g., von Luxberg 2007) and was introduced into computer vision by Shi and Malik (2000). The data is defined by a graph with an affinity, or similarity measure, between graph nodes. The computation – to segment the data – can be performed by linear algebra follo...

متن کامل

Machine Learning Approaches to Link-Based Clustering

We have reviewed several state-of-the-art machine learning approaches to different types of link based clustering in this chapter. Specifically, we have presented the spectral clustering for heterogeneous relational data, the symmetric convex coding for homogeneous relational data, the citation model for clustering the special but popular homogeneous relational data – the textual documents with...

متن کامل

Learning Shape Segmentation Using Constrained Spectral Clustering and Probabilistic Label Transfer

We propose a spectral learning approach to shape segmentation. The method is composed of a constrained spectral clustering algorithm that is used to supervise the segmentation of a shape from a training data set, followed by a probabilistic label transfer algorithm that is used to match two shapes and to transfer cluster labels from a training-shape to a test-shape. The novelty resides both in ...

متن کامل

Learning Segmentation by Random Walks

The context here is image segmentation because it was in this domain that spectral clustering was introduced by Shi and Malik in 2000. Meila and Shi provide a random-walk interpretation of the spectral clustering algorithm, and then use a transition probability matrix to create a model which learns to segment images based on pixel intensity (which they call “edge strength”) and “co-circularity”...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Digital Signal Processing

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2014